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The nonlinearity of the gravity sea flow past a three-dimensional flat blunt ship with 
a length-based Froude number of order unity is studied using the method of matched 
asymptotic expansions. It is shown that the nonlinearity is important in an inner 
domain near the ship, whereas the flow in the rest of the fluid domain is the solution 
of a Neumann-Kelvin problem. Two possible inner solutions - a jet and a wave - are 
obtained and discussed. 

1. Introduction 
The computation of the wave resistance of ships has been the subject of a voluminous 

literature since the beginning of the century. But it has not yet received a definitive 
solution, despite the various mathematical approaches tried recently. One of these, 
which uses assumption of an ideal fluid, consists of looking for the potentialof the flow 
as the solution of a Neumann-Kelvin problem. According to Brard (1972): ‘this prob- 
lem can be called the Neumann-Kelvin problem, for the boundary condition on the 
hull is of Neumann type, while the boundary condition on the free surface is that used 
by Lord Kelvin when, the first of all, he initiated the mathematical researches on ship 
waves ’. A complete derivation of the equations of the Neumann-Kelvin problem can 
be found in the paper by Newman (1976); the main characteristic of that  problem is 
the linearized free-surface condition, which may be written down in the following 
dimensionless form : Fk$, ,+$ ,=O on z = O ,  

where x and z are respectively the horizontal and vertical co-ordinates moving with 
the ship, q5 is the velocity potential, and Fk = U2/gL with U the speed of the ship, g 
the gravity and L a characteristic length of the flow, say the ship length. It is this 
linearization that is the source of much dispute about the Neumann-Kelvin problem. 

As Noblesse (1976) pointed out, the linearization of the free surface may be justi- 
fied by the combination of several conditions. For example, a balance between the 
bluntness and the speed of the ship can make small the surface disturbance. Supporters 
of the Neumann-Kelvin model argue that good agreement may be found between the 
theory and experiments, thus, Chang (1977) and Guevel, Delhommeau & Cordonnier 
(1977) are satisfied with the comparison between their computations and the experi- 
mental results they display for submerged or surface-piercing bodies. 

(1.1) 

t Present address: Service Technique des Constructions et Armes Navales, BA/N, 8 Boulevard 
Victor - 75015 Paris. 
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Nevertheless, such arguments do not seem to convince the opponents of the 
Neumann-Kelvin theory. For instance, Tuck (1977), who declares himself ‘a known 
enemy of the Neumann-Kelvin problem ’, doubts the validity of the linearization. 
Such a view can be supported by the results of Dagan & Tulin (1972, hereafter referred 
to as I), Nichols & Hirt (1975) or Tuck & Vanden-Broeck (1977). An analytical two- 
dimensional study which provides evidence of the existence of a jet at the forebody 
is reported in I. But there is a discrepancy between their results and that obtained by 
the method of the present paper. This is more completely discussed in 3 8. The other 
two papers furnish numerical results showing significant nonlinear phenomena in the 
vicinity of a surface-piercing body. Nichols & Hirt give a striking description of the 
transient growth of a three-dimensional jet near an impulsively started box-like body, 
the length-based Froude number of which is FL N 0.9. Tuck & Vanden-Broeck solve 
numerically the nonlinear problem of a steady two-dimensional flow past a semi- 
infinite body. At the stern, they present results, for FL 2 2, t  which make it obvious 
that the free surface cannot be linearized. At the bow, their method does not apply 
directly, but they obtain results, for FL N 1.34,p which suggest strongly the presence 
of a jet. 

However, the contradiction between the two opinions just given is perhaps not so 
strong. Indeed, the computed wave resistance is rarely compared to experiments for 
Fi greater than 0.25 or 0-30. On the contrary, the nonlinear phenomena become quite 
obvious only for FL near 1. One might think that the nonlinearity cannot be neglected 
beyond some critical value of FL, depending on the bluntness of the body. The present 
work originates from the need of knowing if the extension of the method of Jami & 
Lenoir (1978) to the three-dimensional case of a surface-piercing body could be adapted 
in order to take into account the nonlinear behaviour of the fluid, when necessary. 
Its purpose is to provide an analytical description of the flow in the region of non- 
uniformity of the linearized Neumann-Kelvin solution. To this end, with the aid of 
the matched asymptotic expansions method, it studies a case in which one has to 
expect an important nonlinearity: that of a blunt ship with FL of order unity. 

The method used could be compared to that applied by Nguyen & Rojdestvenskii 
(1975) who study an hydroplaning wing in finite water depth. In  their problem, there 
are indeed three characteristic lengths: (i) the wing chord c“; (ii) the wing span l, 
which is of the same order as the water depth; (iii) the characteristic length of inertia 
phenomena, say L = U 2 / g .  One can associate to each of them a domain: BE, 9~, BL. 
The authors choose assumptions such that: .!/L < < 1. As a consequence, the 
gravity does not play any role in gE nor 9~.  Besides this, they do not state the problem 
in BL; thus 9 f i s  their ‘outer’ domain and 9$ their inner domain in which they point 
out the presence of a jet. 

On the contrary, in the present paper, there are only two characteristic lengths: 
(i) the ship length L,  or equivalently U 2 / g  since Fi 2 1, and (ii) the ship draft T, 
small compared to L, whence two domains. In the inner domain, near the ship water- 
line, the problem stated is a nonlinear one which is solved analytically. In the rest of 
the fluid domain (outer domain), the problem is a Neumann-Kelvin one according to 
Brard’s definition; the complete resolution of this problem would imply the use of a 

f Here, F’’ is based on the length they use to make the co-ordinates dimensionless, which is 
consistent with the scope of the present paper. 
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FIGURE 1. Dimensional configuration. 
The dotted line represents the intersection between fOz  and (X). 

computer; but, for the object of the present paper, it is sufficient to know the inner 
behaviour of its solution, which can be obtained directly with the aid of the variable- 
like method. 

2. Statement of the problem 
2.1. Shape of the hull 

Let L, B, T be the length, beam and draft of the hull (Z) and g the gravity. The co- 
ordinate system 05@ is fixed to the ship and defined such that (see figure 1): 

(a)  05ij is the plane of the undisturbed free surface at  infinity, 
( b )  02 is the vertical upwards axis, 
( c )  0 is the zero level point of the ship bow, 
( d )  OZ is parallel to the uniform incoming flow U ,  with U > 0. 
The Froude number 3'' = U/(gL)* is supposed to be of order unity. The shape of 

the ship is schematically characterized by two dimensionless parameters: 

E = T/L ,  
In  order to apply the matched asymptotic expansions method, the ship will be con- 
sidered as a small perturbation of the uniform flow in the following sense: b is not small 
compared to unity ( b  N 1), E is much smaller than one ( E  < 1). The ship is thus a$at 
ship. 

Let (3'2) be the intersection between the OZg plane and the hull (Z). For the sake 
of computation simplicity, the precise shape of (Z) is the one depicted in figure 2, 
without dimensions (the tilde have been dropped). The features of this hull are as 
follows: (i) the bottom of the ship is flat; (ii) (Pl)  has no sharp angle; (iii) the hull walls 
are generated by straight lines as indicated below. 

b = B/L. 

I2 F L M  I08 
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FIGURE 2. Non-dimensional definition of the hull: (a) side view; (b) front view; 
(c) view from top; (d) section of the ship in the XPz-plane. 

Along (FZ), from 0, is defined the curvilinear abscissa S, corresponding to the point 
P. Let P X  be the inwards horizontal axis, normal to (PI), and y(S) the angle between 
P X  and Ox. The intersection between the wall and the vertical X P x  plane is supposed 
to be rectilinear and to stand at a given angle $(S) to the horizontal axis. It is meant 
by blunt ship that $ is not small and remains constant as e vanishes. 

2.2 Equations 

To study the vicinity of the walls, it is convenient to write down the equations of 
motion using the local co-ordinates ( X ,  S, 2). The non-dimensional unknowns are the 
velocity potential $ ( X ,  S, z, E )  and the free surface elevation q ( X ,  S ,  E ) .  (These quan- 
tities are obtained by dividing the corresponding dimensional quantities respectively 
by U L  and L.)  The differential operators can be expressed in terms of ( X ,  S ,  2); for 
instance, the velocity vector is 

where R(S) is the local curvature radius of (PZ). A detailed analysis, given in Pernandez 
(1978), shows that $ and 7 satisfy the following criteria: 

(i) $ is harmonic in the fluid domain D,  

where R' = dR/dS. 
(ii) The fluid slips on the bottom of the ship, 

$,(X, s, - 8 )  = 0, 0 < x < x,, (2.2) 

(where X ,  is the abscissa of the intersection !2 between P X  and the XOZ plane), and 
on the walls of the hull 

where $' = dp/dS. 
(iii) The free surface (9') is a stream surface, 
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(a) (6 ) 

FIGUEE 3. Inner domain Di and outer domain D,: (a)  view from upside; ( b )  section by XPz.  

(iv) The pressure distribution is continuous across the free surface, 

where K is constant. 
(v) The uniform flow is not perturbed a t  infinity 

?j --f 0. 

3. Outer singular problem 
The first step is to assume that the solution is expandable with respect to 8 

} (3.1) 
$@, 8 9 2 ,  8) = $O(X, S,Z) + h(4 $l(X, s, 4 + v 2 ( 4  $AX, 89.4 + - -  *, 

?j(X,S,4 = ?jO(X,S)+P1(4?jl(X,f9 +P2(E)r2(X,S)+ * ’ * ,  

where vi(c) and pi(€) denote outer asymptotic sequences. When E vanishes, the angle 
p(S) being kept fixed, the hull shrinks to a body (Z0), the bottom of which is the part 
of the xOy plane bounded by (FE). Bringing (3.1) into the complete equations (2.1)- 
(2.6) and letting 8 -+ 0 ,  one obtains the nonlinear problem of order zero. It is of interest 
to note that (2.3) is reduced to the condition 

on the walls of (So). If the problem were regular, the order-zero problem would be 
satisfied by the undisturbed uniform flow, say 

$o = X cos y(S) + sin y(s )  . ds, ? j o  = 0. slf (3.3) 

It is easy to ascertain that all zeroth-order equations but (3.2) admit (3.3) as a solution. 
Indeed, if one introduces (3.3) into (3.2), one is lead to 

cosy(S) = 0, i.e. y(X) = & $n. 

This establishes that the uniform flow may be accepted as the term of order zero in 
a linearized outer domain D,, (FZ) being a singular line around which an inner domain 

12-2 
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Di must be defined, at least along the part which is not parallel to Ox (see figure 3). 
Hence starting from (2.1), (2.2), (2.4), (2.5), (2.6), (3.1), (3.3), it is a matter of simple 
algebra to compute the equations for successive outer orders, once the sequences vi, pi 
are known. Here lies a difficulty which must not be overlooked, as it will be seen below. 
The most secure way to find the outer sequences is to take up the outer expression of 
inner solution as a guide. Thus, it is convenient to state the inner problem. 

4. Inner problem 

the inner variables are defined by 
The inner scale is the one which makes visible the hull geometry. More precisely, 

1 - -  1 
5@,s,4 =,Ir(X,S,E), #(x,s,z,E) = E -#(X,s,Z,E). (4.2) 

Introducing these new variables into the full problem (2.1)-(2.5), one readily obtains 
the inner problem, the solution of which is looked for as a double expansion 

1 $(X, s, 5, E )  = g o ( X ,  8,X) + v;(€) &(X, s, Z) + . . ., 
r ( X ,  s, 8 )  = V0(X,  8) +/A;(€) 7jl(X, 8) + .. . . - (4.3) 

As a matter of fact, one will only look for the inner solution at  order zero. Putting 
(4.3) into the complete inner problem, the equations at  this order are easily derived; 
they may be written down 

- 
- "' =.?Or 'Ox} on the free surface (9'); 
q5o"x + q50",- = 

- 
q50E cos p + $ox sin p = 0 on the wall of the ship; (4.6) 

q50z = 0 on the bottom of the ship; (4.7) 

q50zz +$ozB = 0 in the fluid domain. (4.8) 

- 

- 

Here o; denotes a positive constant. 
In these equations, the curvilinear abscissa S appears only as a parameter; in the 

XPZ-plane, this problem may be interpreted as the one of the two-dimensional motion 
of an ideal fluid without gravity, past an infinitely long two-dimensional body. This 
type of problem can be easily solved by conformal mapping. 

5. Inner solution 
In the method used so far, one does not assume anything about the free surface 

shape. It is now appropriate to consider different possibilities of contact between (2) 
and (9'). One can a priori imagine three typest of flows (see figure 4). 

(a )  In the first type, the contact point C is a corner point. It is thus necessarily a 
stagnation point; hence oo = 0 and the fluid speed vanishes on the whole free surface. 

t While this work was being reviewed, Vanden-Broeck (1980) has brought out a fourth type, 
with separation a t  the corner B of the ship. It is not yet established that this type lends itself 
to the same treatment as the others. 
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Wave solution inner solution 

FIGURE 4. Inner solution: (a)  corner; (b)  upwards tangential contact; 
(c )  downwards tangential contact. 

In  this case, it is however not possible to find an inner solution which is regular at  finite 
distance and matches the outer solution. One may also look for a ‘singular’ inner 
solution, for instance using a second smaller inner zone. This direction has been followed 
without any success. 

(a) The second type is an upward tangential contact. In the strict sense, it is the 
same case as above, except in the case where the contact point J is located at  infinity. 
A jet rise thus occurs. 

(c )  The third type is a downward tangential contact which describes a wave forma- 
tion. 

With the help of conformal mapping, it is easy to  establish that the two disclosed 
possibilities actually lead to two inner solutions. The calculations are too long to be 
detailed here and may be found in Fernandez (1978). Only the main results are given 
here. 

5.1. First inner solution: a jet 

Let 5 be the complex variable g = x + iX and q the inner jet thickness. The 5 plane is 
mapped onto the auxiliary upper half t plane by 

The order zero of the inner solution may be given by the complex velocity 

The corresponding flow is sketched in the figure 5.  

the inner solution at  infinity of the 
Expanding that solution in the vicinity oft  = 1, one may express the behaviour of 

plane 

where A = A(P/n)  and B = B(P/n,q) are constants, the expressions of which are 
given in appendix A. 
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c 

A' (b )  

FIGURE 5. Jet flow in (a) the physical ZPZ-plane, (a) the auxiliary t-plane. 

FIGURE 
(a) 

6. Wave flow in (a )  the physical 

x T 

// /// / ;  , /  / A  

(b )  

ZPZ-plane, (b) the auxiliary h .-plane. 

5.2.  Second inner solution: a wave 
Similarly the physical plane is mapped onto an auxiliary upper half A plane (see figure 

= - c" (1  + A + [A(h + 2 ) ] " 4 " ,  
d h  h2 (5.4) 

where c is a real constant related to the distance between the contact point T and the 
corner B, and the solution at the order zero is 

(5 .5 )  
From (5.4) and ( 5 4 ,  the behaviour of this solution a t  infinity can be obtained 

- w,(h) = wo[ 1 + h + (h(A + 2 ) ) 4 ] W  

where A = A(P/n ,  c) is a constant given in appendix B. 

can be determined only from matching with the outer solution. 
At this stage, oo and q in (5.3), as well as wo and c in (5.6), are still unknown. They 

6. Outer solution 
The outer expression of the inner solution indicates the appropriate outer sequence. 

For instance, setting g = C / E  into (5.3) indicates that, besides the orders 1, E ,  e2, . . . , 
orders of €4, €4 log 6, etc., must be introduced. Thus for the jet solution the suitable 

(6.1) 
sequence is 

and for the wave solution it is 
(6.2) 

The jet case resolution only will be developed. The second solution can be dealt with 
quite similarly; the result only will be given. 

1) €) €8, €2, €8 log 8, € 8 ,  . . . , 

1, €4) E )  €8 log €, €3, . . . . 
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The outer solution is taken as a double expansion 

#(x, S,  2, €1 = #,@, 8, 2) + q 4 ( X ,  S ,  2) + s+Rl(X, 8,~) + e2#2(X, 8,~) 
+ st  log B L2(X, 8, 2) + st R2(X, 8, x )  + . . . , (6.3) 

7(X, s, 4 = 70(X, 4 +E.r,(X, 4 + e W ( X ,  S )  + @2(X, 8) 
+ s%logsA2(X, 8)  + s%H2(X, X) + . . ., 

#, = X cos y(S) + sin y(s) ds, 7, = 0. 1: where 

Substituting # and 7 into the general equations and linearizing the conditions on both 
the free surface and the bottom of the ship, one obtains the problem for the successive 
outer orders. For instance, at  s order 

(6.6) 
on (X ,S ,O) ,  X < 0;  i (6.7) 

#lo = 'l1xcosy+ ( 1--  ;r)-171ssinY 

ql = - F; cos y#lx + (1 -$)-'sin y . [ 
IVg511 - to ,  q l + O  at 00. (6.8) 

This problem is but a special case of the Neumann-Kelvin problem, written using 
local curvilinear co-ordinates. The problems for the following orders are similar but 
more complicated as their order increases. It is not possible to solve these problems 
analytically. Nevertheless, we are interested only in knowing the local behaviour of 
their solutions in the vicinity of (F l ) ;  and it is easy to obtain this behaviour thanks to 
the variable-like method: one introduces a 'small ' arbitrary parameter S (purely 
artificial and which may not be compared to s) and one magnifies the outer variables by 

X = S d ,  2=6&, (6.9) 

directly in each outer problem. For instance, setting 

$I@, 89% 8) = 91(2& s , w ,  (6.10) 

and inserting the new variables into the s-order problem in which one eliminates vl, 
one obtains 

3 -2 d -3 
$122 + $w- ;( 1 - 8 p 2  + P( 1 -ax) $lss-s3F( 2Rt 1 - 6- R) &s = 0, 

h x = 0; (6.11) 

&(2,8, 0,6) = 0,  2 > 0; (6.12) 

6 sin2y s i n 2  y $ ..-- Ass 
(1 - 82/R)2 

$12 + a2 
sin 2y 

(1 - &/R) lSx R (1 - 8 x / R )  
2 cosy + R'sin y 

2R cos y 

6&; + Fi [ cos2 y . $lzz + 6 

] = 0, 2 = 0, 2 < 0. 
S2 sin2y +- 

(6.13) 
(1  - c ? ~ / R ) ~  

The conditions at  infinity are lost when 6 vanishes. 
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The solution of each outer order problem is then sought as an expansion? with 
respect to S. The choice of the &-sequence is guided by the knowledge of the outer 
behaviour of inner solution which indicates at  the same time some terms of the 6- 
sequence and the degree of the outer singularity which one has to accept along (PI). 
For example, 

$,(a, 8, 296) = 8t&,,.,(B, s, 2) + . . . , (6.14) 

and the problem for the leading term $10.5(2,S,2), deduced from (6.11)-(6.14), is 

a%5(2, s, 0) = 0, 
a& 

B > 0 ;  

rz < 0. 

(6.15) 

(6.16) 

(6.17) 

These equations have a helpful characteristic : they are two-dimensional. Moreover, 
is harmonic with respect to ( 2 , 2 ) .  They are thus easily solved using complex 

variables and the Hilbert method. Because these propitious circumstances occur for 
the leading terms of each outer order, one could say that the problem is locally two- 
dimensional. (It is worthwhile to emphasize that this does not imply that the outer 
$ow itself is two-dimensional in the vicinity of (Fl) .  Indeed, the velocity is the vectorial 
sum of (i) a component (0, [l - X/E(S)]-1aq5/a8, 0) parallel to (FE), (ii) a component 
(aq5/aX, 0, a$/&) normal to (FE); the preceding result means that, near the ship, the 
potential submits only to a weak dependence$ on the co-ordinate S, so that the 
dependence on X and z of the latter component can be uncoupled.) 

Then, to take into account that S is an artificial parameter, one must impose that 
the 8-expansions contain S , 8 , S  only gathered into groups (82) and (&a), which allows 
to come back to variables X and z. 

As a result of the pseudo-two-dimensional character of the outer solution, the result 
may be given in terms of complex variables in the XPz-plane using 5 = X + iz 

(6.18) 

t Note that the 8-expansion is not an asymptotic expansion in the sense of the matched 
asymptotic expansions technique, but only an expression showing the leading terms of the 8- 
expanded function in the vicinity of (37). 

$ This situation is similar to that occurring in the slender-ship theory in which the outer 
three-dimensional flow behaves two-dimensionally near the ship, despite the longitudinal flow 
(see Tuck 1964). 
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I n  the case of the wave solution, the same method leads to 
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w = coSy(S)+€+ ( y ) + o ( l )  - ) + €  [ -0 K;r) + 0 (i)) + €+ log s + 0 (t)) 
+d -K”O[l+K,(S)]--- log ([1+ K,(S)] R,(S) -in[ 1 + 2K,(S)])  I 2n gs 2n 

1 
x - + 0 (i) 1 + O ( € + ) .  

5% 
(6.19) 

In  both cases, the real ‘constants’ ki (S) ,  Ki(S) are not yet determined. 

7. Matching of the outer and inner solutions 

(6.19) give the inner behaviour of the outer solutions. 
When expressed with the inner variable [ = [ I s ,  the preceding results (6.18) and 

7.1. Jet solution 
One obtains 

k,(S)  - 7&- 
w([) = logs. [ ci3k1(S)} + cos y(S) + k,o -w [log [+ k,(S) -in] + ... . 

(7.1) 
53 2n@ 

In  order to match (7.1) with (5.3), one must first eliminate the logs-term 

Then wo = cosy(S), 

Therefore matching is possible; equation (7.3) gives wo; equations (7.4) and (7.5) imply 
q = 1. Hence the matching determines completely the inner-order zero. As a conse- 
quence, the jet rate of flow d is known 

d = s .  cos y(S). (7.7) 

7.2. Wave solution 
The inner expression of (6.19) is 

w = logs 
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In order to match it with (5.6) the loge-term must vanish 

K,(S) = - [l + K2(S)] ,  
2n (7.9) 

and wo = cosy(S), (7.10) 

P 
-@,C-42 7T = K0(S) ,  

0 -c3- 19' 2j2 = Ko(S)[1+K2(S]), - 
O n 3  2 2n  

Bc 4 2  o o A -  = -- ([I +K,(S)]K,(S) - in[l+ 2K,(S) ] ,  
n 27r 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

once again, matching is possible; equation (7.10) gives oo. But, in the present case, 
it must be emphasized that the inner-order zero is not determined thoroughly (one 
constant is still unknown, say c). This is because this inner solution describes the 
birth of a wave, the length of which is large compared with the inner scale s; the crest 
of the wave is thus out of the inner zone - and out of the local outer 6 zone - and the 
wave height (related to c ,  for instance) remains unknown. The full determination of 
the wave solution would require a complete numerical computation of the outer flow. 

7.3. Discussion and experimental veri$cation 

Summarizing the results obtained so far, it is established that, at  a given position S 
along (Pi), two solutions are possible. In  order to distinguish between them, one can 
first easily show that, if one of these solutions is accepted at  a certain abscissa S of 
the fore section (respectively, of the aft section) of the ship, it must be accepted 
necessarily on the whole fore section (respectively aft section) up to the point where 
(PI) is parallel to Ox; this is to save the continuity of the representation. Then, one 
may notice the following 

(a)  The jet is not acceptable in the vicinity of the stern, and ideal fluid solutions 
with waves upstream must be refused. 

( b )  The horizontal pressure forces, integrated vertically along the wall of the ship 
are directed inwards for the jet solution, and outwards for the wave solution. Their 
contribution to the wave resistance is thus positive only if the jet is before the ship 
and the wave behind her. Hence, along the forepart of (FZ), the flow is described by 
the jet model while, along the aft section, the wave model is convenient (see figure 7) .  
Particularly, in the vicinity of the bow, one obtains the description of a sheet of water 
which rises with a maximum intensity at  the nose of the ship and fades out as the 
angle between Ox and (FZ) decreases. In  addition, the sheet of water is formed in the 
inner zone, but its evolution occurs at  outer scale, and it falls down again far enough 
to neglect re-entry jet. 

In  order to verify these results, a short test has been performed in the Bassin 
d'Essais des Carhes de Paris; a typical run is shown in the figure 8 (a). 

At the stern, the presence of a viscous wake makes the interpretation of the visual 
observations difficult. However, it is clear that, for large enough FL, the above wave 
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Y 

FIQURE 7.  Three-dimensional flow past a flat blunt ship : (a)  view from upside with horizontal 
pressure forces distribution F ;  (b)  perspective view, with two sections, showing the sheet of 
water fading out along the fore part of the ship and the wave along the rear part. 

solution does not occur. This indicates that this solution is not stable. The real flow 
would be better described with the aid of the solution of Vanden-Broeck (1980). 

On the contrary, at  the bow, the agreement with the jet solution is good enough. 
The rise of the sheet of water is observed (see figure 8 b ) .  Figure 9 presents the experi- 
mental decrease of the jet height along the water line compared with the one predicted 
from the present model. At the bow ( y  2: 0 ) ,  the jet height is overestimated by the 
theory because the viscous effects are neglected; while for greater y, the jet height is 
underestimated owing to three-dimensional effects corresponding to orders higher 
than the one considered in the above-mentioned expansions. Nevertheless, on the 
whole, the theoretical prediction is satisfying. 

8. Discrepancy with the results of I concerning high Froude number 
The same method has been applied to the two-dimensional case of a blunt ship, the 

draft of which is 6, and has led to similar results featured in figure 10. At the stern, 
one obtains a wave. At the bow, the convenient solution is a two-dimensional jet; 
its thickness is determined from matching and is t = E .  

With the same notation, it was found in I that t was of order e2. This discrepancy 
may indicate a possible mistake in those results. In order to support this opinion, it 
is worthwhile to make three remarks. 

(a )  The jet thickness expressed in I using inner variables is t of order E .  This result 
introduces E in the zero-order of their inner solution. From the mathematical point 
of view of the matched asymptotic expansions method, this is not correct because the 
order zero is not supposed to depend on E .  

( b )  Moreover, the order zero in the inner solution represents a flow without gravity. 
Now E = gT U-2. Hence, gravity is reintroduced into the equations of a flow without 
gravity through the small parameter; which seems to be a contradiction. 

(c) Lastly, if M is a point at  the free surface defined in their auxiliary plane [ (see 
figure 11) by CJf = -p"+io-, p" > 0. 

Starting from their formula (37), p. 536, it is easy to compute the vertical co-ordinate 
of M ,  when p" -++a 

(8.2) 
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(b 1 
FIGURE 8. Model test at the Bassin d'Essais des Carhnes de Paris: L = 0.4 m, B = 0.2 m, 
T = 0.02 m; so that:  b = 0.5, E = 0.05. Along the fore part and the walls, P(S) = const. = 80". 
(FZ) is the water line number 0. The towing speed is U = 1.5 m s-l, hence B!! = 0.76. (a) front 
view, ( b )  side view. 
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FIGURE 9. Cylindrical projection of the wave-top profile onto the body hull : 
- _ -  , experimental ; -, theoretical (the hull is developed). 

FIGURE 10. Two-dimensional flow past a flat blunt ship. 

This means that, in front of the ship, in inner zone, there is a free surface depression 
which is deeper than the ship draft. So this solution seems physically unacceptable. 

The same difficulties were met by the author of the preserh paper; they were shown 
to point out an incomplete outer asymptotic sequence. As a matter of fact, to  make the 
solution in I correct, t' must be of order unity in their formula (69), p. 541; then (70) 
shows that the outer sequence must be completed by a term €4. 
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9 Conclusion 
The main features of this paper are the following two assumptions: first, the body 

shape is somewhat rough-hewn in order to allow an analytical study of the flow, but 
the main characteristic which has to be emphasized is the bluntness; secondly, the 
square Froude number is of order one. For the present theory, the latter assumption 
is essential. As a consequence of it, the problem can be treated by dividing the fluid 
domain into two parts 

(a) an ‘outer’ domain, the size of which is of the same order of magnitude as the 
body length. In  this region, the free-surface condition is of the Kelvin type. On the 
contrary, if U 2 / g  were small compared with L, FZq5, would be small compared with 
q5* in equation (1 .1)  and, therefore, the leading term of q5 would rather satisfy a free- 
surface condition of the Neumann type. This would make more suitable a model such 
as the slow-ship theory of Baba & Hara (1977). 

( b )  an ‘inner’ domain, small compared with the ship length, but which cannot be 
neglected. In  this region, the nonlinearities dominate. 

This situation has first a practical consequence for the numerical study of the subject: 
it is probably not useful to solve the complete nonlinear problem in the whole flow 
domain, as do Tuck & Vanden-Broeck. It is undoubtedly possible and sufficient to 
treat a twofold problem: linear far from the body and nonlinear only near the body. 

It has also a more general consequence: when one uses the Neumann-Kelvin model 
to compute the flow past a blunt ship (i) whether the two terms of equation (1 .1)  are 
of the same order of magnitude ( F i  N l), then the model is not valid, except if one 
takes into account thenonlinearities in thevicinityof theship, (ii)ortheyareof different 
orders of magnitude ( F i  < l) ,  then the model is not really consistent but, nevertheless, 
the computation may happen to be practically efficient, a t  least within a certain range 
of F i  values. In  this case, the question is: what is the limit? 

This work is based on the author’s I.D. thesis (University Pierre et Marie Curie, 
1978) which has been supported by the Ministere de la DBfense. 

Appendix A. Expression of A and B in (5.3) 

The result is 
The computation of A aad B is not really difficult, but is too long to be given here. 

1 - (P/n)2 
p n a  ’ A =  

B = n2 

where x, = -1+;cotgp+ B2 lo1 G(z) dz [c(z) - 1 + $1 dx 

using 
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Appendix B. Expression of A in (5.6) 
Similarly to the above: 

- 
A = - c22/2[1+logc]-- C2J2 [ 4 (f - ) - I] - $ + in [ (F) + 4 4 2 ,  (:I2 12 

where 

)I/= I)"ndx+/,+m[ ( 1 +x+ (1 f 2 x 9  [ 2 4 2 ( 5 ) - 1 + s , ' ( 1 + x + ( 1 + 2 x )  
X - X 

x,=-+c2 l 
tsP 

- 1 + P 4 2  - --I P2 dx)  
nxk n2x * 
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